
Helping You Build Your Cyber Security

Guide to Patching

clickandprotect.co

Table of
Contents

01 What is patching?

What are the
benefits of
patching?

What should be
patched

Patching isn’t easy

How to manage
patching

What if you can’t
patch?

Summary

Contact C&P

03

04

05

06

07

Page 1

02 Page 1

Page 2

Page 3

Page 4-7

Page 8-9

Page 9

08 Page 10

Page 1

Software isn’t easy to produce. This is why it
goes through extensive testing before being
released.

However, inevitably—because coders and
testers are human—there’ll be small errors
(known as bugs) in the code that were missed
in testing. A few of those errors will leave
security holes that need to be patched; some
will mean that the software doesn’t work
exactly as intended. Once found, they’ll need to
be fixed.

Sometimes new threats are identified, that
weren’t taken into account when developing the
code initially. And occasionally, updates that
were intended to fix errors introduce new
problems, which are identified later.

This is why software manufacturers issue new
versions of their software, designed to fix errors
and patch holes. These new versions are called
updates, or patches.

They are not the same as upgrades. A software
upgrade is a version of the software that
supersedes the old version: it is intended as an
improvement, offering new functionality, better
speed or efficiency.

1. What is
patching?

Reduce the security risk to your business by
closing vulnerabilities.
Make sure software is up to date, which may
help with stability and therefore productivity.
Add any available functionality updates, so you
get the best out of your products.
Ensure compliance. Regular and timely updates
are often required as part of adherence to
standards.

Installing patches is a fundamental security hygiene
practice. It can prevent security incidents and lower
the impact of any incident that does happen.

Updates should be done regularly to:

Updates should be done quickly, because once
attackers know about software vulnerabilities, they
may try to exploit them before the patches become
available and are installed. Delay in installation
obviously extends the period of time that your
software is vulnerable to attack.

2. What are
the benefits
of patching?

3. What should be
patched?
Any device that runs software may need regular updates.

This could include: your desktop, laptops, tablets and phones, your firewalls, hubs, switches and
routers, other hardware, smart devices and no doubt more, depending on your industry.

It includes firmware, operating systems and software applications (commercial off-the-shelf, or
in-house), your website and web applications. Think about everything on your network, and
services provided to you through the cloud.

And, depending on your agreement with your provider, you may also be responsible for updating
the server software that your email, cloud applications and websites run on, and the security
software that protects it, and so on.

The first step in patch management is to know what you have that might need updates. It will
probably be a longer list than you anticipate.

Page 2

Fixes might be prohibitively expensive: perhaps
it was poorly documented, or extremely
complex, and you no longer have the skills in-
house to implement a fix—or perhaps you just
don’t have the budget.
The fix might be required to legacy code in an
application: perhaps the vendor has gone out
of business, or that version is no longer
supported.
Updates to your asset would require it to be
recertified, which would take it out of use for
some time.
You are required to maintain an asset as is
pending investigations of some kind.
Updates to one asset require an updated
version of another—but that one can’t be
updated for one of the reasons listed.
You are running embedded systems, for which
you may not have the source code.
Your software is so old that patches are no
longer available and/or it won’t support newer
versions of software.
Your asset has no free memory to install a
patch.
There are known bugs in an update that would
adversely impact your system.

Sometimes patching requires a reboot to take
effect: this isn’t always as straightforward as
‘turning it off and on again’, particularly if this is a
production machine running 24/7.

And sometimes patching can fail. The patch
installation may fail, or it might cause unexpected
operational issues—particularly in complex systems
—and need to be uninstalled, or patched in turn.
Rolling back to the previous version of the system
also adds time and costs to the process.

However, postponing patching gives attackers more
time to take advantage of the vulnerability in your
systems. If a patch fixes a security issue, it is likely
that an attacker knows about the problem already.
Perhaps by reverse engineering the patch to
establish the issue with the code.

4. Patching isn’t easy

The problem isn’t in the code that you own, for
example, it is in a commercial application. You
have to wait for an official patch to be
released.
The problem isn’t on assets that you own,
though you do use them, so you are dependent
on someone else doing the updates. These third
parties might be vendors— or they might be
employees with personal devices used for work,
under your Bring Your Own Device (BYOD)
policy.
Fixes might take time to implement, because of
the testing time required to make sure that
making such a change doesn’t negatively
impact anything else.

It may seem obvious that you should implement
updates when prompted, but it isn’t always easy.
Updating your own Windows laptop when you get
an update alert is simple and straightforward—
unless, of course, you are in the middle of a client
presentation when an update starts.

But if you are doing much more than that, it takes
both skill and time, and therefore money, and
careful planning.

It may require some downtime for crucial business
systems, and therefore will incur cost and
inconvenience.

Also, for some companies, there are devices out in
the field that might need to be recalled and
brought in for patching, or which may require a
field-trip for updates. Either of these requirements
could delay updates.

You need to know what you have, in order to know
what needs to be patched. For a small company,
this might be simple, but for a large organisation,
maintaining an up-to-date list of assets can be
difficult. If there are a large number of assets to be
updated, patching can become a fulltime job.

Some software is very hard to patch because the
code can’t be modified, or can’t be modified
quickly. This could be for one or more of many
reasons, such as:

Page 3

5. How to
manage
patching

Scanning your network to identify missing patches.
Downloading and applying patches to pre-
specified groups of assets.
Testing that patches were applied correctly.
Reporting on patch status, rollout progress and
any issues.

At home, you can update your devices as needed, at
a time that suits you.

For more complex business environments with many
devices (and many stakeholders), there are patch
management applications available, including patch
management as a service.

These tools and services may not cover all software on
all your devices, but should make the standard process
work smoothly for many of them by:

You’ll need to decide what your strategy for patching
will be, and plan the patching carefully.

Page 4

Create a patch strategy
1. Identify your assets. All of them: hardware and
software. Find out what software (and what software
versions) you are using on which devices. Remember
to include firmware and operating systems, not just
applications. Don’t forget to include shared libraries.

2. Run a vulnerability scan over your system to
identify vulnerabilities.

3. Conduct a risk analysis of your assets. Which are
the most critical to your organisation? Which are the
most vulnerable?

Sign up to vendors mailing lists and notifications.
Ensure these are sent to a central and dedicated location, so that
they are not missed (especially emergency notifications, which would
not arrive on a predictable schedule).
Be aware of vulnerabilities identified in any third-party libraries and
open-source software that you use.
Consider subscribing to data feeds for vulnerabilities to receive
updates.

If patching requires downtime of a production environment, it would
be better to take it down once, rather than repeatedly.
Ensure that a bundle of patches in a release don’t interfere with
each other.
Discuss with the business and risk owners. They need to understand
the proposed changes, will know what the risks are for their area of
work, and should sign-off on the patch release
Try to avoid multiple updates to the same piece of software at the
same time, if you are running behind on your patch schedule; later
updates may have dependencies on earlier updates, and so they
may have to be updated in a particular order.
Don’t forget to review patches that were excluded from previous
patch releases, to check that these exceptions are still appropriate.

4. Review (or create) a patching policy, including documentation
requirements. If relevant, make sure it covers updates for employee-
owned devices.

5. Monitor to ensure you are aware of all available patches for your
systems:

6. Set up automated updates where possible. You could also automate
scripts to test that patches were applied correctly. Automation will
reduce the patching workload, but must be balanced against the risk of
the automatic update causing a problem.

7. Prioritise the patches available based on your risk assessment, and
plan to do the most important first.

8. Plan a routine patching schedule for assets with a regular release
cycle. Remember: just because it is routine doesn’t mean it isn’t
important. Don’t postpone it. And don’t forget about updating mobile
devices too.

9. Plan patch releases, if that’s appropriate:

Page 5

Patching should reduce the risk to your business, but it also brings its own risks. There is a risk that
installing updates can cause unintended side effects. These can include performance reduction,
breaking the updated software, removing custom and needed changes or inadvertently changing
configuration settings to weaken security, or disrupting other software running in parallel. Another risk
is that the update itself might be compromised: it might not have come from an authorised source, or it
might have been tampered with. It must be checked before installation.

To minimise the risk of patching, you should define a standard patching process, such as:

Which software it applies to.
What issues it should be resolving.
What the dependencies are for implementation.
If there are any known issues with the implementation of this patch.

They should come from the vendor site.
They should be downloaded over a secure channel.
If you are downloading from a mirror site, make sure the patch files are signed.

This should be long enough to allow the patching to complete.
It should allow time to roll-back, in case of a failed patch.
You may need to consider multiple patch windows if you operate in multiple time zones.
You may need to deploy patches in batches.

What you test will depend on the patch, but you should make sure that the core functions still work
the same way, and nothing else is impacted by the change.

1. Understand what the patch is for:

2. Confirm that the patch files come from the correct source, and document it:

3. Download the patch files. Ideally download them to a central location to make things easier.

4. Check that the patch files are complete and not corrupted by running a checksum (the vendor should
provide you with a hash).

5. Agree an appropriate patch window with the business to minimise disruption to service and to your
staff:

6. Test the patch in a mirror test environment to avoid unexpected consequences:

Page 6

Standard patch release

10. Coordinate the patch releases with your change management process. Consider pre-approval for
standard releases. Also consider what pre-approval might be appropriate for emergency patching.

11. Track patch exceptions. One delay or exception might not add much risk, but the risk may be
substantially higher when combined with other exceptions. Previous exceptions should be reviewed
regularly as part of the process.

12. Create a simple regression test pack, with scenarios for patching different elements.

13. Prepare for emergency patching, including the creation (if you don’t already have one) of an
emergency patch process document.

Determine under what conditions you would decide to roll-back.

If appropriate, check the version number post-patch, to see if it has updated.
Re-run a vulnerability scan to see if the vulnerabilities being patched have been resolved.

7. Backup your production environment—just in case you need to roll-back (undo the patch, and revert to
an earlier version of the environment):

8. Patch systems in order of criticality.

9. Patch redundant systems (such as a cluster of servers) separately.

10. Re-run if necessary to patch any of your systems that were missed out for any reason.

11. Verify that the patching is complete:

12. Monitor to be sure no problem has arisen.

13. Measure your patching performance - what percentage of systems are up to date? What percentage
of patches failed? How long did it take to patch the most recent release?

14. Assess how the process went, and apply any lessons learned.

15. Documentation at every step is essential: you need to know exactly what you’ve done at every step.
This documentation will support your knowledge of your asset estate, ready for the next release, but
would also support roll-back if necessary, or the pinpointing of any problems that might arise.

Page 7

Are you sure that an announced vulnerability affects you? Don’t be swayed by the level of publicity
surrounding a particular vulnerability online—it may not be relevant to your environment, or you may
already have controls in place that would cover it.

Discuss the emergency patch release with the business risk owners, so that they understand and agree
that it must be done.

If you’re sure that you need to install the patch, install it in a mirror environment and then test to make
sure it works and has no adverse effects. Do the standard regression testing you’d do for any patch
release. While we know that emergency patches need to go out quickly, don’t rush this stage: it would
not help to create extra damage while trying to roll out a patch.

Notify your end users if you need to apply a patch out of the usual timeframe, or if they’ll need to
reboot.

Emergency patch release

Page 8

6. What if you can’t
patch?

Restrict applications that can run on that asset to an approved list, so that other, uninvited
software can’t run.
Remove unnecessary connections. If that asset doesn’t need to be connected to another asset,
then removing that connection will reduce the risk.
Block removable media to stop data leakage and infection.
Segment the network to mitigate the risk—isolating the asset that can’t be patched as much as
possible.
Consider implementing hardware-based security, such as data diodes to enforce a one-way flow
of data, if appropriate.
Consider virtual patching.

Once you’ve identified those assets that you can’t patch for some reason, you should identify other
protections for those assets. Once you’ve decided how you’ll protect them and developed an incident
response plan just in case—you should monitor them carefully.

Other protections might include:
1.

2.

3.
4.

5.

6.

What is virtual patching?
Suppose that there is a known vulnerability due to a code error in one of your applications. A virtual
patch is intended to prevent the vulnerability from being exploited, (even though the code has not
been edited), by:

Controlling the inputs to the application through a web application firewall, proxy or server
plugin. It analyses traffic, and intercepts attacks so that malicious traffic doesn’t reach the
application.
Or by controlling the outputs: either by blocking the entire outbound session (which might alert
the attacker, or reduce the functionality of the system) or by redacting (or ‘scrubbing’) the output
to prevent exposure of sensitive data.

For example, by developing policies, plans and procedures, or installing software modules that
you might need to activate if patching.

Virtual patching has two goals: it minimises the time-to-fix (even if only with a temporary fix) and it
reduces the organisation’s exposure to the risk of attack.

Like the standard and emergency patching processes outlined above, there should be a consistent
and repeatable process to virtual patching. This process would follow the same pattern.

Plan in advance for patching needs:

Via vendor announcements, public disclosure or, worst case—a security incident.

Not forgetting to discuss the risks with the business owners, and ensuring that they understand this
is a temporary and possibly incomplete fix.

Identify vulnerabilities:

Determine the risk to your organisation of those vulnerabilities and whether virtual patching is
appropriate and needed.

Prioritise the patching:

Then create, install, test and document the patches.

Don’t forget to consider updating the underlying code (which does, after all, still contain the problem)
in future patch releases. If you do decide to patch the code at a later date, you can then determine
whether you should remove the virtual patch.

Page 9

7. Summary
Patching is important, and should be done regularly and as quickly as
possible after the patch is released. There are exceptions; the risks
associated with this should be carefully considered, and mitigations put in
place.

Patching becomes more difficult as the size of the system and the number
of components grows. Proper processes and documentation should be put
in place to manage it, and dedicated patch management applications
considered.

clickandprotect.co
Helping You Build Your

Cyber Security

Page 10

8. Contact C&P
Email: contactus@clickandprotect.co
Website: www.clickandprotect.co
Tel: 0113 733 6230
LinkedIn: Click and Protect

So, in this guide, we have discussed what patching is, what should be patched and why. We’ve outlined
some of the issues that people responsible for patching, can face.

We’ve described the steps involved in a patch management strategy, and in creating both a standard
patch release and an emergency patch release.

Then we discussed what to do if you are unable to patch an asset, and described virtual patching, and
the steps involved in setting up a virtual patch.

If you are wondering how best to implement patching in your organisation, call Click and Protect on
0113 733 6230 to find out how we can help.

